Fast Cardinal Interpolation
نویسندگان
چکیده
A computationally fast and optimally smooth method for generating a probability density of y given x that models given data points is described and illustrated. This method interpolates in that the mean function intersects the points and the variance function is zero at the points. It is fast and optimal in that it is produced by the smallest number of maximally-smooth Gaussian radial interpolators for which the extrapolated density has the mean and variance of the classic linear model.
منابع مشابه
Cardinal Hermite Spline Interpolation with Shifted Nodes
Generalized cardinal Hermite spline interpolation is considered. A special case of this problem is the classical cardinal Hermite spline interpolation with shifted nodes. By means of a corresponding symbol new representations of the cardinal Hermite fundamental splines can be given. Furthermore, a new efficient algorithm for the computation of the cardinal Hermite spline interpolant is obtained...
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملA new approach to semi-cardinal spline interpolation
The problem of semi-cardinal spline interpolation was solved by Schoenberg exploiting the piecewise polynomial form of the splines. In the present paper, we propose a new construction for the Lagrange functions of semi-cardinal spline interpolation , based on a radial basis and Fourier transform approach. This approach suggests a way of extending semi-cardinal interpolation to polyharmonic spli...
متن کاملNon-equidistant approximate DFT based on Z-splines
In this paper, we consider an algorithm that efficiently evaluates a trigonometric polynomial at arbitrarily spaced nodes. It is based on the approximation of the polynomial by a function we can evaluate easily. We are particularly interested in the case where we interpolate the trigonometric polynomial using high-order cardinal interpolation kernels known as Z-splines, which we construct and s...
متن کاملII . Splines with uniform knots draft jul 74 , TEXed 1997
draft jul74, T E Xed 1997 Carl de Boor 1. Specialization to the knot sequence Z 2. Cardinal spline interpolation 3. The exponential splines 4. Cardinal spline interpolation as the degree goes to infinity 5. Approximation of cardinal type 6. Semicardinal
متن کامل